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A B S T R A C T

We introduce Bayesian QuickNAT for the automated quality control of whole-brain segmentation on MRI T1
scans. Next to the Bayesian fully convolutional neural network, we also present inherent measures of segmen-
tation uncertainty that allow for quality control per brain structure. For estimating model uncertainty, we follow a
Bayesian approach, wherein, Monte Carlo (MC) samples from the posterior distribution are generated by keeping
the dropout layers active at test time. Entropy over the MC samples provides a voxel-wise model uncertainty map,
whereas expectation over the MC predictions provides the final segmentation. Next to voxel-wise uncertainty, we
introduce four metrics to quantify structure-wise uncertainty in segmentation for quality control. We report ex-
periments on four out-of-sample datasets comprising of diverse age range, pathology and imaging artifacts. The
proposed structure-wise uncertainty metrics are highly correlated with the Dice score estimated with manual
annotation and therefore present an inherent measure of segmentation quality. In particular, the intersection over
union over all the MC samples is a suitable proxy for the Dice score. In addition to quality control at scan-level, we
propose to incorporate the structure-wise uncertainty as a measure of confidence to do reliable group analysis on
large data repositories. We envisage that the introduced uncertainty metrics would help assess the fidelity of
automated deep learning based segmentation methods for large-scale population studies, as they enable auto-
mated quality control and group analyses in processing large data repositories.
1. Introduction

Automated brain segmentation is a basic tool for processing magnetic
resonance imaging (MRI) and provides imaging biomarkers of neuro-
anatomy like volume, thickness, and shape. Despite efforts to deliver
robust segmentation results across scans from different age groups, dis-
eases, field strengths, and manufacturers, inaccuracies in the segmenta-
tion outcome are inevitable (Keshavan et al., 2018). A fundamental
limitation of existing methods for whole-brain segmentation is that they
do not estimate segmentation quality. Hence, manual quality control
(QC) is advised before continuing with the analysis, but it has several
shortcomings: (i) time consuming, (ii) subject to intra- and inter-rater
3, 80337, München, Germany.
oy).
btained from the Alzheimer's Dis
ign and implementation of ADNI
nd at: http://adni.loni.usc.edu/w

19

.

variability, (iii) binary (pass/fail), and (iv) global for the entire scan. In
particular when operating on large datasets, manual QC is very time
consuming so that cohort-level summary statistics on biomarkers have,
for instance, been used for identifying outliers (Sabuncu et al., 2016). A
shortcoming of such heuristics is that they operate decoupled from the
actual image and segmentation procedure.

Variational inference is one of the most commonly used approach in
bayesian learning for approximating probability distribution functions
(Blei et al., 2017). Such variational inference based bayesian approaches
for image segmentation are an alternative because they do not only
provide the mode (i.e., the most likely segmentation) but also the pos-
terior distribution of the segmentation. Most of such Bayesian
ease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the
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approaches use point estimates in the inference, whereas marginalizing
over parameters has only been proposed in combination with Markov
Chain Monte Carlo sampling (Iglesias et al., 2013) or the Laplace
approximation (Wachinger et al., 2015). Although sampling-based ap-
proaches incorporate fewer assumptions, they are computationally
intense, especially when used in conjunction with atlas-based segmen-
tation, and thus, have only been used for segmenting substructures but
not the whole-brain (Iglesias et al., 2013).

Fully convolutional neural networks (F-CNNs) have become the tool
of choice for semantic segmentation in computer vision (Badrinarayanan
et al., 2017; Long et al., 2015) and medical imaging (Ronneberger et al.,
2015). In prior work, we introduced QuickNAT (Roy et al., 2017, 2018b),
an F–CNN for whole-brain segmentation of MRI T1 scans that has not
only outperformed existing atlas-based approaches, but also accom-
plished the segmentation orders of magnitude faster. QuickNAT is also
much faster than DeepNAT, a previous patch-based approach for brain
segmentation with neural networks (Wachinger et al., 2018). Although
F-CNNs provide high accuracy, they are often poorly calibrated and fail
to estimate a confidence margin with the output (Guo et al., 2017). The
predictive probability at the end of the network, i.e., the output of the
softmax layer, does not capture the model uncertainty (Gal and Ghah-
ramani, 2016).

Recent progress in Bayesian deep learning utilized the concept of
Monte Carlo (MC) sampling via dropout to approximate samples from the
posterior distribution (Gal and Ghahramani, 2016). Dropout has origi-
nally been proposed to prevent overfitting during training (Srivastava
et al., 2014). Dropout at test time approximates sampling from a Ber-
noulli distribution over network weights. As dropout layers do not have
learnable parameters, adding them to the network does not increase
model complexity or decrease performance. Thanks to fast inference with
CNNs, multiple MC samples can be generated to reliably approximate the
posterior distribution in acceptable time. MC dropout for estimating
uncertainty in deep learning was originally proposed for classification
(Gal and Ghahramani, 2016) and later applied to semantic segmentation
with F-CNNs in computer vision (Kendall et al., 2015), providing a
pixel-wise model uncertainty estimate.

In this article, we propose to inherently measure the quality of whole-
brain segmentation with a Bayesian extension of QuickNAT. For this
purpose, we add dropout layers to the QuickNAT architecture, which
enables highly efficient Monte Carlo sampling. Thus, for a given input
brain scan, multiple possible segmentations are generated by MC sam-
pling. Next to estimating voxel-wise segmentation uncertainty, we pro-
pose four metrics for quantifying the segmentation uncertainty for each
brain structure. We show that these metrics are highly correlated with
the segmentation accuracy (Dice score) and can therefore be used to
predict segmentation accuracy in absence of reference manual annota-
tion. Finally, we propose to effectively use the uncertainty estimates as
quality control measures in large-scale group analysis to estimate reliable
effect sizes.

The automated QC proposed in this article offers advantages with
regards to manual QC. Most importantly, it does not require manual in-
teractions so that an objective measure of quality control is available at
the same time with the segmentation, particularly important for pro-
cessing large neuroimaging repositories. Furthermore, we obtain a
continuous measure of segmentation quality, which may be a more
faithful representation than dichotomizing into pass and fail. Finally, the
segmentation quality is estimated for each brain structure, instead of a
global assessment for the entire brain in manual QC, which better reflects
variation in segmentation quality within a scan.

The main contributions of the work are as follows:

1. First approach for whole-brain segmentation with inherent quality
estimation

2. Monte Carlo dropout for uncertainty estimation in brain segmenta-
tion with F–CNN
12
3. Four metrics to quantify structure-wise uncertainty in contrast to
voxel-wise uncertainty

4. Comprehensive experiments on four unseen datasets (variation in
quality, scanner, pathology) to substantiate the high correlation of
structure-wise uncertainty with Dice score

5. Integration of segmentation uncertainty in group analysis for esti-
mating more reliable effect sizes.

While end-to-end learning approaches achieve high segmentation
accuracy, the ‘black box’ nature of complex neural networks may impede
their wider adoption in clinical application. The lack of transparency of
such models makes it difficult to trust the outcome. In addition, the
performance of learning-based approaches is closely tied to the scans
used during training. If scans are presented to the network during testing
that are very different to those that it has seen during training, a lower
segmentation accuracy is to be expected. With the uncertainty measures
proposed in this work, we address these points by also estimating a
quality or confidence measure of the segmentation. This will allow to
identify scans with low segmentation accuracy, potentially due to low
image quality or variation from the training set. While the contributions
in this work do not increase the segmentation accuracy, we believe that
assigning a meaningful confidence estimate will be as important for its
practical use.

2. Prior art

Prior work exists in medical image computing for evaluating seg-
mentation performance in absence of manual annotation. In one of the
earliest work, the common agreement strategy (STAPLE) was used to
evaluate classifier performance for the task of segmenting brain scans
into WM, GM and CSF (Bouix et al., 2007). In another approach, the
output segmentation map was used, from which features were extracted
to train a separate regressor for predicting the Dice score (Kohlberger
et al., 2012). More recent work proposed the reverse classification ac-
curacy (RCA), whose pipeline involves training a separate classifier on
the segmentation output of the method to evaluate, serving as pseudo
ground truth (Valindria et al., 2017). Similar to previous approaches, it
also tries to estimate Dice score. The idea of RCA was extended for seg-
mentation quality control in large-scale cardiac MRI scans (Robinson
et al., 2017).

In contrast to the approaches detailed above, our approach provides a
quality measure or prediction confidence that is inherently computed (i.e.
derived from the same model, in contrast to using a separate model for
estimating quality) within the segmentation framework, derived from
model uncertainty. Thus, it does not require to train a second, indepen-
dent second classifier for evaluation, which itself might be subject to
prediction errors. An earlier version of this work was presented at a
conference (Roy et al., 2018a) and has here been extended with meth-
odological improvements and more experimental evaluation. To the best
of our knowledge, this is the first work to provide an uncertainty measure
for each structure in whole-brain segmentation and its downstream
application in group analysis for reliable estimation.

3. Method

We propose a fully convolutional neural network that produces next
to the segmentation also an estimate of the confidence or quality of the
segmentation for each brain structure. To this end, we use a Bayesian
approach detailed in the following sections.
3.1. Background on bayesian inference

Given a set of training scans I ¼ feI1;⋯;~Img with its corresponding
manual segmentations S ¼ f~S1;⋯;~Smg, we aim at learning a probabilistic
function Fseg : I → S. This function generates the most likely segmenta-



Fig. 1. Illustration of addition of droupout layers after every encoder and
decoder blocks of an F–CNN model to generate Monte Carlo samples of
segmentation.
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tion S⋆ given a test scan I⋆. The probability of the predicted segmentation
is

pðS⋆jI⋆; I;SÞ ¼
Z

pðS⋆jI⋆;WÞpðWjI;SÞdW; (1)

where W are the weight parameters of the function Fsegð�Þ. The posterior
distribution over weights in Eq. (1) is generally intractable, where we use
variational inference to approximate it. Thus, a variational distribution
over network's weights qðWÞ is learned by minimizing the Kullback-
Leibler divergence KLðqðWÞjjpðWjI; SÞÞ, yielding the approximate pre-
dictive distribution

qðS⋆jI⋆; I;SÞ ¼
Z

pðS⋆jI⋆;WÞqðWÞdW: (2)

In Bayesian neural networks, the stochastic weights W are composed
of L layers W ¼ ðWiÞLi¼1. The variational distribution qðWiÞ for layer i is
sampled as

Wi ¼ Mi � diag
��

zi;j
�ki
j¼1

�
; (3)

zi;j � BernoulliðpiÞ; i ¼ 1;…; L; j ¼ 1;…;Ki�1:

Here zi;j are Bernoulli distributed random variables with probabilities pi,
and Mi are variational parameters to be optimized. The diag ð�Þ operator
maps vectors to diagonal matrices whose diagonals are the elements of
the vectors. Also, Ki represents the number of nodes in the ith layer.

The integral in Eq. (2) is estimated by summing over Monte-Carlo
samples drawn from W � qðWÞ. Note that sampling from qðWiÞ can be
approximated by performing dropout on layer i in a network whose
weights are ðMiÞLi¼1 (Gal and Ghahramani, 2016). The binary variable
zi;j ¼ 0 corresponds to unit j in layer i� 1 being dropped out as an input
to the ith layer. Each sample of W provides a different segmentation for
the same input image. The mean of all the segmentations provides the
final segmentation, whereas the variance among segmentations provides
model uncertainty for the prediction.

3.2. QuickNAT architecture

As the base architecture, we use our recently proposed QuickNAT
(Roy et al., 2018b). QuickNAT consists of three 2D F–CNN models,
segmenting an input scan slice-wise along coronal, axial and sagittal axes.
This is followed by a view aggregation stage where the three generated
segmentations are combined to provide a final segmentation. Each 2D
F–CNN model has an encoder-decoder based architecture, four encoder
blocks and four decoder blocks separated by a bottleneck block. Dense
connections are added within each encoder and decoder block to pro-
mote feature re-usability and promote learning of better representations
(Huang et al., 2017). Skip connections exist between each encoder and
decoder block similar to U-Net (Ronneberger et al., 2015). The network is
trained by optimizing the combined loss function of weighted Logistic
loss and Dice loss. Median frequency balancing is employed to
compensate for class imbalance (Roy et al., 2018b).

3.3. Bayesian QuickNAT

We use dropout layers (Srivastava et al., 2014) to introduce sto-
chasticity during inference with the QuickNAT architecture. A dropout
mask generated from a Bernoulli distribution zi;j generates a probabilistic
weight Wi, see Eq. (3), with random neuron connectivity similar to a
Bayesian neural network (Gal and Ghahramani, 2016). For Bayesian
QuickNAT, we insert dropout layers after every encoder and decoder
block with a dropout rate r, as illustrated in Fig. 1. Dropout is commonly
used during training of neural networks to prevent over-fitting, but
deactivated during testing. Here, we keep dropout active in the testing
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phase and generate multiple segmentations from the posterior distribu-
tion of the model. To this end, the input scan I is feed-forwarded N times
through QuickNAT, each time with a different and random dropout
mask. This process simulates the sampling from a space of sub-models
with different connectivity among the neurons. This MC sampling of
the models generates N samples of predicted probability maps fP1;⋯PNg,
from which hard segmentation maps fS1;⋯SNg can be inferred by the ‘
arg max ’ operator across the c classes. This approximates the process of
variational inference as in Bayesian neural networks (Gal and Ghahra-
mani, 2016). The final segmentation S is estimated by computing the
average over all the MC probability maps, followed by a ‘ arg max ’

operator as

S ¼ arg max
c

1
N

XN
i¼1

Pi: (4)

The probability map Pi consists of c class channels fP1
i ⋯Pc

i g, repre-
senting probability maps for each individual class, which includes the
addressed brain structures and background. It must be noted that in
QuickNAT, we have three 2D F–CNN networks segmenting the MRI scan
slice-wise along axial, coronal and sagittal axes. These three segmenta-
tion maps are combined by averaging the generate a single segmentation
map Pi indicated here (Roy et al., 2018b).

3.4. Uncertainty measures

3.4.1. Voxel-wise uncertainty
The model uncertainty Us for a given voxel x, for a specific structure s

is estimated as entropy over all N MC probability maps fPs1;⋯;PsNg

UsðxÞ ¼ �
XN
i¼1

Ps
i ðxÞ � log

�
Ps
i ðxÞ

�
: (5)

The global voxel-wise uncertainty is the sum over all structures, U ¼P
sUs. Voxels with low uncertainty (i.e. low entropy) receive the same

predictions, with different random neurons being dropped out from the
network. An intuitive explanation for this is that the network is highly
confident about the decision and that the result does not change much
when the neuron connectivity is partially changed by using dropouts. In
contrast, the prediction confidence is low, if predictions change a lot with
altering neuron connectivity.

3.4.2. Structure-wise uncertainty
As most quantitative measures extracted from segmentation maps

(e.g., Hippocampus volume) relate to specific brain structures, it is
helpful to have an uncertainty measure corresponding to each brain
structure, rather than each voxel. Here, we propose four different metrics
for computing structure-wise uncertainty from MC segmentations, illus-
trated in Fig. 2 for N ¼ 3 MC samples.



Fig. 2. A single input scan results in different Monte Carlo (MC) segmentations (S1;S2;S3) based on different dropouts in the fully ConvNet. The samples are used to
estimate three variants of structure-wise uncertainty. The final segmentation S is the average of the MC samples as shown in Eq. (4), used in the third variant.
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Type-1: We measure the variation of the volume across the MC
samples. As volume estimates are commonly used for neuroanatom-
ical analysis, this type of uncertainty provides a confidence margin
with the estimate. We compute the coefficient of variation,

CVs ¼ σs
μs
; (6)

with mean μs and standard deviation σs of structure s for MC volume
estimates. Note that this estimate is agnostic to the size of the structure.

Type-2: We use the overlap between samples as a measure of uncer-
tainty. To this end, we compute the average Dice score over all
possible pairs of N MC samples,

dMC
s ¼ E

h�
Dice

�ðSi ¼ sÞ; �Sj ¼ s
��	

i 6¼j

i
: (7)

This measures the agreement in area overlap between all the MC
samples in a pair-wise fashion.

Type-3: We use the intersection over overlap (IoUs) metric, over all
the N MC samples for a specific structure s as measure of its uncer-
tainty. The value of IoUs is constraint between ½0; 1� and it is
computed as

IoUs ¼ jðS1 ¼ sÞ \ ðS2 ¼ sÞ \⋯ \ ðSN ¼ sÞj
jðS1 ¼ sÞ \ ðS2 ¼ sÞ \⋯ \ ðSN ¼ sÞj: (8)

Type-4: We define the uncertainty for a structure s as mean global
voxel-wise uncertainty over the voxels which were labeled as s,

U s ¼ E
�fUðxÞgx2fS¼sg

�
: (9)

It must be noted that dMC
s and IoUs are directly related to segmentation

accuracy, while U s and CVs are inversely related to accuracy. Also, it is
worth mentioning that computing voxel-wise uncertainty maps requires
all N segmentation probability maps Pi (each one having a size around
2 GB), which can be computationally demanding. In contrast, our pro-
posed metrics (except U s) use label maps Si (size around 200 KB), which
are much smaller in size and can be computed faster.
3.5. Segmentation uncertainty in group analyses

Commonly, image segmentation is only a means to an end, where
image-derived measures are used in follow-up statistical analyses. We are
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interested in propagating the uncertainty from the segmentation to the
follow-up analyses. The rationale is that segmentations with high un-
certainty potentially corresponds to scans with poor quality whose in-
clusion would confound the true effect sizes and limit the statistical
significance of observed group differences. We demonstrate the inte-
gration of uncertainty for a general linear model (GLM) in the following,
but it can also be generalized to other statistical models. GLMs are
frequently used in neuroimaging studies for identifying significant as-
sociations between image measures and variables of interest. For
instance, in numerous group analyses studies Hippocampus volume was
shown to be an important imaging biomarker with significant associa-
tions to Alzheimer's disease.

In solving the regression model, each equation, i.e., each subject, has
equal importance in the optimization routine (i.e. ωi ¼ 1; 8i). In
contrast, we propose to integrate the structure-wise uncertainty in the
analysis. This is achieved by solving a weighted linear regression model
with a unique weight ωi � 0 for subject i,

bβ ¼ arg min
X
i

ωi

�
Vi � Xiβ

>�2; (10)

with design matrix X, vector of coefficients β, and normalized brain
structure volume Vi (normalized by intra cranial volume). We use the
proposed structure-wise uncertainties (CVs, dMC

s and IoUs) and set the
weight as,

ωi ¼ 1
CVs

; ωi ¼ 1
1� dMC

s

or ωi ¼ IoUs: (11)

Including weights in the regression increases its robustness as scans
with reliable segmentation are emphasized. Setting all weights to a
constant results in standard regression. In our experiments, we use

Xi ¼ ½1;Ai; Si;Di� β ¼ ½β0; βA; βS; βD� (12)

with age Ai, sex Si and diagnosis Di for subject i. Of particular interest is
the regression coefficient βD, which estimates the effect of diagnosis on
the volume of a brain structure.

4. Experimental setup

4.1. Architecture and training procedure

We set the dropout rate to r ¼ 0:2 (other values of r decreased the
segmentation performance compared to not using droupouts). We pro-
duce N ¼ 15 MC samples (<2min), after which performance saturates



Table 1
Mean Dice scores on CANDI dataset with different number of
MC samples and without dropout.

#MC samples (N) Mean Dice score

3 0:801� 0:035
6 0:803� 0:033
9 0:803� 0:036
12 0:804� 0:034
15 0:806� 0:037
18 0:807� 0:034
No Dropout 0:806� 0:035

Table 2
Mean absolute change in voxel-wise Entropy Map E½absðUi � UjÞ�,
when entropy estimated from using i MC samples (Ui) to using j MC
samples (Uj).

Transitions (i → j) E½

Ui � Uj


� � 10�3

3 → 6 0.7827

A.G. Roy et al. NeuroImage 195 (2019) 11–22
(shown in Sec. 5.1). For training the neural networkwith limited data, we
use the pre-training strategy with auxiliary labels proposed earlier (Roy
et al., 2017). To this end, we pre-train the network on 581 vol of the IXI
dataset2 with segmentations produced by FreeSurfer (Fischl et al., 2002)
and subsequently fine-tune on 15 of the 30 manually annotated volumes
from the Multi-Atlas Labelling Challenge (MALC) dataset (Landman and
Warfield, 2012). The remaining 15 vol were used for testing. The split is
consistent to challenge instructions. This trained model is used for all our
experiments. In this work, we segment 33 brain structures (listed in the
appendix).

4.2. Test datasets

We test of four datasets, where three of the datasets have not be seen
during training.

1. MALC-15: 15 of the 30 vol from the MALC dataset that were not used
for training are used for testing. MALC is a subset of the OASIS re-
pository (Marcus et al., 2007).

2. ADNI-29: The dataset consists of 29 scans from Alzheimer's Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu), with a
balanced distribution of Alzheimer's Disease (AD) and control sub-
jects, and scans acquired with 1.5T and 3T scanners. The objective is
to observe uncertainty changes due to variability in scanner and pa-
thologies. The ADNI was launched in 2003 as a public-private part-
nership, led by Principal Investigator Michael W. Weiner, MD. For up-
to-date information, see www.adni-info.org.

3. CANDI-13: The dataset consists of 13 brain scans of children (age
5–15) with psychiatric disorders, part of the CANDI dataset (Kennedy
et al., 2012). The objective is to observe changes in uncertainty for
data with age range not included in training.

4. IBSR-18: The dataset consist of 18 scans publicly available at https:
//www.nitrc.org/projects/ibsr. The objective is to see the sensi-
tivity of uncertainty with low resolution and poor contrast scans.

Note that the training set (MALC) did not contain scans with AD or
scans from children. Manual segmentations for MALC, ADNI-29, and
CANDI-13 were provided by Neuromorphometrics, Inc.3 Also, labels of
Neuromorphometrics, Inc. and FreeSurfer atlas were both done by
following the CMA protocol, so the definition of the annotated anatom-
ical structures are comparable.

5. Experimental results and discussion

5.1. Number of MC samples

First, we examine the choice of number of MC samples (N) needed for
our task. This choice is mainly dependent on two factors: (i) the seg-
mentation accuracy by averaging all the MC predictions needs to be
similar to the segmentation accuracy not using dropouts at test time, and
(ii) the estimated uncertainty map needs to be stable, i.e., addition of
more MC samples should not effect the computed entropy values. We use
the CANDI-13 dataset for this experiment as it represents an out of
sample dataset, i.e., data not used in training the model. It therefore
provides a realistic test case on unseen data. We performed experiments
with N ¼ f3;6;9; 12; 15; 18g.

The mean global Dice scores for different values of N are reported in
Table 1. We observe that the Dice score remains more or less constant as
N increases from 3 to 18, which is very close to the Dice performance
with no dropouts at test time. This is in contrast to prior work that re-
ported a performance increase with more MC samples (Kendall et al.,
2015). A potential reason for this is that the QuickNAT framework
2 http://brain-development.org/ixi-dataset/.
3 http://Neuromorphometrics.com/.
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aggregates segmentations across the three principal axes (coronal, axial
and sagittal) (Roy et al., 2018b). Hence, N MC samples actually repre-
sents aggregating 3 �N segmentations in our framework. Furthermore,
the view aggregation step compensates from the slight decrease in seg-
mentation performance due to dropout at test time.

Next, we investigate the number of MC samples needed to reliably
estimate the model uncertainty. The voxel-wise uncertainty can be
considered stable if the estimated entropy values do not change sub-
stantially with larger N. Let the uncertainty maps for i and j MC samples
be Ui and Uj, respectively. We estimate the mean absolute difference
between them, E½

Ui � Uj



� to quantify the stability. We report this value
for different consecutive transitions i → j of MC samples in Table 2. We
observe that the transition 15 → 18 yields a small difference, indicating a
stable estimation of the uncertainty maps.

It is worth mentioning that as N increases, not only does the seg-
mentation time per scan increase, but also the required computational
resources and complexity. This is due to the fact that all the N interme-
diate 3D segmentation probability maps (4D tensors) need to be loaded in
the RAM for estimating the voxel-wise uncertainty map. We set N ¼ 15
for all the following experiments, which provides high segmentation
accuracy and reliable uncertainty estimates, while keeping the compu-
tational complexity within acceptable margins.
5.2. Uncertainty based quality control across different datasets

In this section, we conduct experiments to explore the ability of the
proposed structure-wise uncertainty metrics in predicting the segmen-
tation quality across different seen and un-seen datasets. Towards this
end, we compute the correlation coefficient between the four uncertainty
metrics and the Dice scores to quantify its efficacy in providing quality
control. We report the mean Dice score, the correlation coefficients and
mean IoU in Table 3 for all four datasets described in Sec. 4.2. Firstly, we
observed that the segmentation Dice score is the highest onMALC dataset
(88%), while the performance drops by 5� 7% Dice points for other
datasets (ADNI, CANDI and IBSR). The reason for this is that part of the
MALC dataset was used for training, whereas the other datasets are un-
seen scans resembling more realistic scenarios with training and testing
scans coming from different datasets. This decrease in Dice score is
accompanied by decrease in mean IoU (i.e. increase in structure-wise
uncertainty). We also observe that all the correlation values with the
four metrics for all datasets are within acceptable margins (0:71�
0:91%). IoU has the highest correlation across all four datasets. Next to
6 → 9 0.5135
9 → 12 0.3539
12 → 15 0.2421
15 → 18 0.0925

http://adni.loni.usc.edu
http://www.adni-info.org
https://www.nitrc.org/projects/ibsr
https://www.nitrc.org/projects/ibsr
http://brain-development.org/ixi-dataset/
http://Neuromorphometrics.com/


Table 3
Results on 4 different datasets with global Dice scores (DS) and correlation of
Dice scores with 4 types of uncertainty.

Datasets Mean Dice score Corr (�, DSs) Mean

U s CVs dMC
s

IoUs IoUs

MALC-15 0:88� 0:02 � 0:85 � 0:81 0.86 0.88 0.88
ADNI-29 0:83� 0:02 � 0:72 � 0:71 0.78 0.78 0.85
CANDI-13 0:81� 0:03 � 0:84 � 0:86 0.90 0.91 0.82
IBSR-18 0:81� 0:02 � 0:76 � 0:76 0.80 0.84 0.83

In the second column, the best Dice score for MALC-15 is indicated in bold. In the
rest, the uncertainty measure with the highest correlation with Dice score is
indicated in bold.

Fig. 4. Results of 4 different cases, one from each dataset, corresponding to the
worst Dice score. The MRI scan, segmentation, voxel-wise uncertainty and
structure-wise uncertainty (IoUs) are presented. The color coding of IoUs heat
map between ½0:4;1� is shown to the right, with darker shades of red indicating
high reliability in segmentation.

Table 4
Comparison between Dice scores (DS) and IoUs. Correlation and mean absolute
error (MAE) between Dice score and IoU, together with accuracy as identifying
segmentations as bad, medium, and good.

Dataset Corr (IoU, DS) MAE Accuracy

MALC-15 0.88 0.02 0.88
ADNI-29 0.78 0.07 0.83
CANDI-13 0.91 0.04 0.84
IBSR-18 0.84 0.06 0.80
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reporting correlations, we show the scatter plots for the four uncertainty
measures with respect to actual Dice score on CANDI-13 dataset in Fig. 3.
In the scatter plots, we represent one dot per structure per scan, with
unique colors for each of the classes. For the sake of clarity, structures
from the left hemisphere of the brain are only displayed. We note that
dMC
s and IoUs show compact point clouds, whereas U s is more dispersed

indicating lower correlation. It must be noted that each of the three
unseen datasets has unique characteristics, which are not present in the
training MALC scans. IBSR consists of scans with low resolution and thick
slices. ADNI contains subjects exhibiting neurodegenerative pathologies,
whereas training was done on healthy subjects. CANDI consists of chil-
dren scans, whereas none of the training subjects was from that particular
age range. So, we believe our experiments cover a wide variability of out
of sample data (resolution, pathology, age range), which the model might
encounter in a more uncontrolled setting. This is shown in Fig. 4 and
explained in detail in Sec. 5.5.

5.3. IoU as A proxy for the dice score

The Dice coefficient is the most widely used metric for evaluating
segmentation accuracy and provides an intuitive ‘goodness’ measure to
the user. This has motivated earlier works to directly regress the Dice
score for segmentation quality control (Kohlberger et al., 2012; Valin-
dria et al., 2017). Our approach is different because we provide inherent
measures of uncertainty of the segmentation model. While we have
demonstrated that our measures are highly correlated to Dice scores
(Sec. 5.2), the actual structure-wise uncertainty values may be chal-
lenging to interpret because it is not immediately clear which values
indicate a good or bad segmentation. When looking at the scatterplot in
Fig. 3, we see that the uncertainty measures on the x-axis and the Dice
score on the y-axis are in different ranges, with the only exception of
IoU. Indeed, the values of IoU closely resembles the Dice score and we
will demonstrate in the following paragraph that it is a suitable proxy for
the Dice score.
Fig. 3. Scatter plot of four types of proposed uncertainty and Dice scores on CANDI-1
coefficient (r). For clarity, structures only on the left hemisphere are shown.
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We estimated the mean absolute error (MAE) between IoUs and Dice
score and reported the results in Table 4. Also, similar to Valindria et al.
(2017), we define three categories, i.e., Dice range ½0:0;0:6Þ as ‘bad’,
½0:6;0:8Þ as ‘medium’ and ½0:8; 1:0� as ‘good’. We categorize the seg-
mentations with actual Dice score and IoUs, and report the per-class
classification accuracy in Table 4. MAE varies between 2� 7%, while
3 dataset (one dot per scan and structure), with their corresponding correlation



Table 5
Effect of different Rician noise levels on mean Dice scores, mean IoUs, mean
absolute error (MAE) and accuracy of identifying segmentations as bad, medium,
and good.

Noise Levels Mean Dice score Mean IoUs MAE Accuracy

No Noise 0:88� 0:02 0.88 0.02 0.88
dB¼ 3 0:87� 0:02 0.83 0.05 0.83
dB¼ 5 0:85� 0:03 0.78 0.10 0.75
dB¼ 7 0:69� 0:18 0.58 0.26 0.72
dB¼ 9 0:37� 0:25 0.22 0.25 0.70
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accuracy between 80� 88% as reported in Table 4. All the similarity
metrics (Correlation, MAE and 3-class classification accuracy) between
IoUs and Dice score have values very similar or better to the ones reported
in (Valindria et al., 2017) over 4 different datasets. This is remarkable
because Valindria et al. (2017) trained a model to dedicatedly predict the
Dice score, while we are simply computing the intersection over overlap
of the MC samples without any supervision.

We also presented a structure-wise analysis to investigate similarity
between Dice score and IoUs in Fig. 5. Again, only structures on the left
hemisphere of the brain are shown for clarity. In the boxplot, we
observe that for most of structures IoUs is very close to actual Dice
score. The worst similarity is observed for the inferior lateral ventri-
cles, where there is about 15% difference between the two metrics. A
potential reason could the small size of the structure. With all these
experiments, we substantiate the fact that IoUs can be effectively used
as a proxy for actual Dice score, without any reference manual
annotations.

5.4. Sensitivity of uncertainty to scan quality

MRI scans of poor quality can lead to a degradation of the segmen-
tation performance. Such poor quality scans can occur due to various
reasons like noise, motion artifacts, and poor contrast. Model uncertainty
is expected to be sensitive to the scan quality and should increase
whenever segmentation accuracy decreases due to poor data quality. In
this section, we investigate whether this property holds for our proposed
model. Towards this end, we performed an experiment where we artifi-
cially degraded the quality of the input brain MRI scan with Rician noise.
Here we use the MALC test dataset for evaluation purposes. We corrupt
the scans with dB levels f3; 5; 7;9g and reported the mean global Dice
score and mean IoUs at each noise level in Table 5. We observe that the
mean Dice score reduces as the dB level of the added Rician noise in-
creases, whereas mean IoUs also decreases (indicating an increase in
uncertainty). This confirms our hypothesis than our model is sensitive to
scan quality. We also observe that mean IoUs falls at a faster rate than
mean Dice score, indicating that uncertainty is more sensitive to noise
than segmentation accuracy. It must be noted that in all our experiments
with real scans, we did not encounter any scenario where segmentation
failed (Dice score < 0:5). The experiment with Rician noise with dB ¼ 9
resembles an artificially induced failure case.

5.5. Qualitative analysis

We present qualitative results of Bayesian QuickNAT in Fig. 4. From
Fig. 5. Boxplot of Dice score (in ) and IoUs (in ) per structure on CANDI-13
Centre-lines indicate the median, boxes extend to the 25th and 75th percentiles, and
by crosses).
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left to right, the input MRI scan, its corresponding segmentation, voxel-
wise uncertainty map and structure-wise uncertainty (IoUs) heat map
are illustrated. The scale of the heat map replicates the Dice score ½0; 1�,
where red corresponds to 1, indicating higher reliability in segmenta-
tion. Each row shows an example from the four different datasets, where
we selected the scan with the worst segmentation accuracy for each
dataset. The first row shows results on a test sample from the MALC
dataset, where segmentation is overall of high quality. This is reflected
by the thin lines in the voxel-wise uncertainty (anatomical boundaries)
and redness in the structure-wise uncertainty heat map. Since the same
dataset was used for training, we obtain high segmentation accuracy on
MALC. The second row presents the scan with worst performance on the
IBSR-18 dataset. Careful inspection of the MRI scan shows poor contrast
with prominent ringing artifacts. The mean Dice score of the scan is
0.79, which is 3% below the mean score for the overall dataset. An in-
crease in voxel-wise uncertainty can be observed visually by the thick-
ening of the lines along anatomical boundaries (in contrast to MALC).
The structure-wise uncertainty maps shows lighter shades of red in some
sub-cortical structures, indicating a lesser reliable segmentation, in
comparison to MALC. The third row presents the scan with worst per-
formance in ADNI-29, which belongs to a subject of age 95 with severe
AD pathology. Prominent atrophy in cortex along with enlarged ven-
tricles can be visually observed in the scan. In addition to the pathology,
ringing artifacts at the top of the scan can be observed. The mean Dice
score is 0.78, which is 5% below the mean Dice score for the dataset. Its
IoUs heat map shows higher uncertainty in some subcortical structures
with brighter shades, whereas the reliability of cortex and lateral ven-
tricles segmentation is good. It must be noted that training scans did not
consist of any subjects with AD, and this example illustrates the per-
formance of our framework for un-seen pathology. The last row presents
the MRI scan with the worst performance on CANDI-13. The mean Dice
score of the scan is 0.73, which is 8% below the mean Dice performance
dataset. Only structures on the left hemisphere of the brain is shown for clarity.
the whiskers reach to the most extreme values not considered outliers (indicated
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of the dataset. This scan can be considered as an outlier in the dataset.
The scan belongs to a subject of age 5 with strong motion artifacts
together and poor contrast. Scans of such age range and such poor
quality were not used in the training pipeline, which explain the
degradation of the segmentation performance. Its voxel-wise uncer-
tainty is higher in comparison to others, with some prominent dark
highly uncertain patches in subcortical regions. The heat map shows the
lowest confidence for this scan, in comparison to other results. The
cortical regions show shades of yellow, whereas some sub-cortical
structures show shades of blue, which is towards the lower end of the
reliability scale.
5.6. Uncertainty for group analysis

In the following section, we integrate structure-wise uncertainty in
regression models for robust group analyses.

5.6.1. Group analysis on ADNI-29
ADNI-29 is a small subset of the ADNI dataset with 15 control and 14

Alzheimer's patients. We perform a group analysis as per Eq. (10) with
age, sex, and diagnosis as independent variables and the volume of a
brain structure as independent variable. Since we have manual annota-
tions for ADNI-29, we can compute the actual volumes and accordingly
estimate the ground truth regression coefficients. Table 6 reports the
regression coefficients for diagnosis βD for twelve brain structures. The
coefficients are estimated based on manual annotations, segmentation
with FreeSurfer and with Bayesian QuickNAT. Further, we use the
uncertainty-based weighting on the volume measures from Bayesian
QuickNAT. Weighting was done using three of the proposed structure-
wise uncertainty as presented in Eq. (11). Our hypothesis is that
weighting will result in regression coefficients βD that are numerically
equal or closer to the estimates from the manual annotation than those
without weighting. We observe that out of the selected 12 structures,
more reliable estimation of βD is achieved with weighting and five
structures using dMC

s based weighting. Also for all structures, any
weighting resulted in βD estimation, which is closer to its actual value,
thus substantiating our hypothesis. These results demonstrate that inte-
grating segmentation quality in the statistical analysis leads to more
reliable estimates.

5.6.2. ABIDE-I
We perform group analysis on the ABIDE-I dataset (Di Martino et al.,

2014) consisting of 1; 112 scans, with 573 normal subjects and 539
subjects with autism. The dataset is collected from 20 different sites with
a high variability in scan quality. To factor out changes due to site, we
added site as a covariate in Eq. (10). We report βD with corresponding
p-values for the volume of brain structures that have recently been
associated to autism in a large ENIGMA study (Van Rooij et al., 2017). We
Table 6
Estimates of regression coefficient for diagnosis βD in group analyses on ADNI-29 c
annotations and segmentations with FreeSurfer and Bayesian QuickNAT. For the
weighting with CVs, dMC

s and IoUs.

Structures Manual FreeSurfer

Annotations

White Matter 1.129 0.788
Cortex �0.202 �0.406
Lateral ventricle �0.368 �0.392
Caudate �0.111 �0.026
Putamen 0.109 0.225
3rd Ventricle �0.214 �0.333
4th Ventricle �0.022 �0.055
Hippocampus 1.149 0.979
Amygdala 1.005 0.891
Accumbens 0.343 0.738
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compare uncertainty weighted regression (weighted by CVs, dMC
s and

IoUs) to normal regression in Table 7. Strikingly, uncertainty weighted
regression results in significant associations to autism, identical to (Van
Rooij et al., 2017), whereas normal regression is only significant for
amygdala.

Standard approaches for group analysis on large cohorts involves
detection of outlier volume estimates and removing the corresponding
subjects from the regression process. This sometimes also requires a
manual inspection of the segmentation quality. In contrast to these ap-
proaches, we propose to use all the scans and associated a continuous
weight for all, providing their relative importance is estimating the
regression coefficients without the need for any outlier detection or
manual inspection.

5.7. General discussion

We introduced an approach to not only estimate the segmentation but
also the uncertainty in the segmentation. The uncertainty is directly
estimated from the segmentation model. Consequently, the uncertainty
increases if a test scan is presented to the network that is different to the
scans that it has seen during training. On the one hand, this holds for
individuals that have different demographic characteristics or pathol-
ogies. On the other hand, this holds for image quality, which is related to
the image acquisition process. Learning-based approaches can produce
staggering segmentation accuracy, but there is strong dependence on the
scans used during training. Since it will be impossible to have all scans
that can potentially occur in practice represented in the training set,
uncertainty is a key concept to mark scans with lower segmentation ac-
curacy. Uncertainty could therefore be used to decide if scans have to
acquired again due to insufficient quality. Further, it could be used to
guide the inclusion of particular types of scans in training.

Our experiments have demonstrated that structure-wise uncertainty
measures are highly correlated to the Dice score. They can therefore be
used for automated quality control. In particular, the intersection over
union of the Monte Carlo samples has the same range as the Dice score
and is demonstrated to be highly correlated with Dice in unseen datasets.
Consequently, it can be interpreted as a proxy for the Dice score when
manual annotations are not available to compute the actual Dice score.
This can be beneficial for judging the segmentation quality of single
scans.

For the analysis of groups of images, we then went one step further
and integrated uncertainty measures in the follow-up analysis. We have
demonstrated the impact of such an integration for regression analysis,
but the general concept of weighting instances by their uncertainty can
be used for many approaches, although it may require some adaptation.
Such an approach offers particular advantage for the analysis of large
repositories, where a manual quality control is very time consuming. Our
results for the regression models have shown that weighting samples
according to the segmentation quality yields estimates that are more
onsisting of healthy controls and AD patients. Results are reported for manual
volume measures with Bayesian QuickNAT, we also report uncertainty-based

QuickNAT Bayesian QuickNAT

CVs dMC
s

IoUs

0.779 0.778 0.779 0.799
�0.156 �0.158 �0.177 �0.146
�0.372 �0.376 �0.423 �0.405
�0.047 �0.088 �0.131 �0.067
0.276 0.237 0.055 0.130
�0.353 �0.357 �0.391 �0.325
�0.076 �0.063 �0.019 �0.022
1.282 1.280 1.249 1.191
1.149 1.104 1.039 0.908
0.516 0.469 0.384 0.473



Table 7
Results of group analyses on ABIDE dataset with autism pathologies, with and without using uncertainty. ⋆ indicates statistical significance in reported p-values.

Autism Normal Regression CVs dMC
s

IoUs

Biomarkers βD pD βD pD βD pD βD pD
Amygdala � 0:14 0:0140⋆ � 0:32 0:0001⋆ � 0:27 0:0001⋆ � 0:19 0:0012⋆

Lat. Ventricles � 0:01 0.8110 � 0:38 0:0089⋆ � 0:19 0.0843 � 0:07 0:0442⋆

Pallidum � 0:07 0.2480 � 0:40 0:0051⋆ � 0:28 0:0165⋆ � 0:25 0:0322⋆

Putamen � 0:07 0.2186 � 0:43 0:0035⋆ � 0:39 0:0057⋆ � 0:37 0:0059⋆

Accumbens � 0:08 0.1494 � 0:21 0:0013⋆ � 0:17 0:0031⋆ � 0:12 0:0421⋆
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similar to those from the manual annotation. As an alternative, a
Bayesian hierarchical regression model could be used for the inference
that takes all MC samples as input, but integrating structure-wise un-
certainty values is not straightforward.

6. Conclusion

In this article, we introduced Bayesian QuickNAT, an F–CNN for
whole brain segmentation with a structure-wise uncertainty estimate.
Dropout is used at test time to produce multiple Monte Carlo samples of
the segmentation, which are used in estimating uncertainty. We intro-
duced four different metrics to quantify structure-wise uncertainty. We
extensively validated on multiple unseen datasets and demonstrate that
the proposed metrics have high correlation with segmentation accuracy
and provide effective quality control in absence of reference manual
annotation. The datasets used in the experiments include unseen data
from a wide variety with scans from children, with pathologies, with low
resolution and with low contrast. Strikingly, one of our proposed metrics,
intersection over union of MC samples, closely approximates the Dice
score. In addition to this, we proposed to integrate the uncertainty
metrics as confidence in the observation into group analysis, yielding
reliable effect sizes. Although, all the experiments are performed on
neuroimaging applications, the basic idea is generic and can easily to
extended to other segmentation applications. We believe our framework
will aid in translating automated frameworks for adoption in large scale
neuroimaging studies as it comes with a fail-safe mechanism to indicate
the user whenever the system is not sure about a decision for manual
intervention.

Data and code availability statement

All the datasets used in this article are publicly available. The labels
for ADNI-29 and CANDI-13 were obtained through academic subscrip-
tion with Neuromorphometrics Inc. The labels for MALC and IBSR-18 are
19
publicly available. The code will be soon uploaded in GitHub (https
://github.com/abhi4ssj/BayesianQuickNAT).
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Appendix

List of Classes

(1) Left white matter, (2) Left cortex, (3) Left lateral ventricle, (4) Left inferior lateral ventricle, (5) Left cerebellumwhite matter, (6) Left cerebellum
cortex, (7) Left thalamus, (8) Left caudate, (9) Left putamen, (10) Left pallidum, (11) 3rd ventricle, (12) 4th ventricle, (13) Brain stem, (14) Left hip-
pocampus, (15) Left amygdala, (16) CSF, (17) Left accumbens, (18) Left ventral DC, (19) Right white matter, (20) Right cortex, (21) Right lateral
ventricle, (22) Right inferior lateral ventricle, (23) Right cerebellum white matter, (24) Right cerebellum cortex, (25) Right thalamus, (26) Right
caudate, (27) Right putamen, (28) Right pallidum, (29) Right hippocampus, (30) Right amygdala, (31) Right accumbens, (32) Left ventral, and (33)
Optic Chiasma.
Architectural Design

In this section, we present the architecture design as depicted in Roy et al. (2018b) for completeness. QuickNAT has an encoder/decoder like 2D
F–CNN architecture with 4 encoders and 4 decoders separated by a bottleneck layer shown in Fig. 6. The final layer is a classifier block with softmax.
The architecture includes skip connections between all encoder and decoder blocks of the same spatial resolution, similar to the U-Net architecture
(Ronneberger et al., 2015). These skip connections not only provide encoder feature information to the decoders, but also provide a path of gradient
flow from the shallower layers to deeper layers, improving training. In the decoder stages, instead of up-sampling the feature maps by convolution
transpose like U-Net, we included un-pooling layers (Noh et al., 2015). These ensure appropriate spatial mappings of the activation maps during
up-sampling, which in turn improves segmentation accuracy, especially for small subcortical structures.

https://github.com/abhi4ssj/BayesianQuickNAT
https://github.com/abhi4ssj/BayesianQuickNAT
http://www.fnih.org
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Fig. 6. Illustration of QuickNAT's encoder-decoder based fully convolutional architecture consisting of dense, bottleneck and classifier blocks shown in the zoomed
view. The symbols corresponding to different network layers are also explained here.

Dense Block
Each dense block consists of three convolutional layers (Fig. 6). Every convolutional layer is preceded by a batch-normalization layer and a Rectifier

Linear Unit (ReLU) layer. The first two convolutional layers are followed by a concatenation layer that concatenates the input feature map with outputs
of the current and previous convolutional blocks. These connections are referred to as dense connections (Huang et al., 2017) which improves gradient
flow during training and promote feature re-usability across different stages of convolution (Huang et al., 2017). In addition, they help learning better
representations promoting features learned by different convoltional layers within the same block to be different. The kernel size for these two con-
volutional layers is kept small, 5� 5, to limit the number of parameters. Appropriate padding is provided so that the size of featuremaps before and after
convolution remains constant. The output channels for each convolution layer is set to 64, which acts as a bottleneck for feature map selectivity. The
input channel size is variable, depending on the number of dense connections. The third convolutional layer is also preceded by a batch normalization
and ReLU, but has a 1� 1 kernel size to compress the feature map size to 64. A flow diagram of the dense block is illustrated in Fig. 6.

Encoding Path
The encoder path consists of a set of 4 dense blocks, each followed by a 2� 2 max-pooling block, which at each stage reduces the spatial dimension

of the feature maps by half. During down-sampling by max-pooling, the indices corresponding to the maximum activations are saved and passed to
decoder blocks for un-pooling.

Bottleneck
The bottleneck block consists of a 5� 5 convolutional layer and a batch normalization layer to separate the encoder and decoder part of the network,

restricting information flow between the encoder and decoder.

Decoding Path
The decoder path also consists of 4 dense blocks. Each dense block is preceded by an un-pooling layer. This layer recovers the actual spatial locations

corresponding to the maximum activations, which are lost during max-pooling in the encoders, and places them at the correct location during up-
sampling (Noh et al., 2015). This is very relevant when segmenting small subcortical structures. Another, advantage of up-sampling is that it does
not require any learnable parameters in comparison to convolutional transpose used in U-Net (Ronneberger et al., 2015). The up-sampling is followed
by a skip-connection, which concatenates the un-pooled feature map with the output feature map of the corresponding encoder before max-pooling.
Skip connections add encoder features to the decoders for aiding segmentation and thus allow gradients to flow from deeper to shallower regions of
the network. The concatenated feature map is passed to the next dense block with similar architecture.

Classifier Block
The output feature map from the last decoder block is passed to the classifier block, which is basically a convolutional layer with 1� 1 kernel size

that maps the input to an N channel feature map, where N is the number of classes (28 in our case). This is followed by a softmax layer to map the
activations to probabilities, so that all the channels represent probability maps for each of the classes.
20
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Label Remap Strategy

Bayesian QuickNAT segments 33 brain structures with IDs 1 to 33 as indicated in the list of classes. For training, testing and evaluation purposes, we
map the FreeSurfer labels andManual Labels (provided by Neuromorphometrics Inc.) consistent to that of the QuickNAT IDs. The IDmapping strategy is
detailed in Tab. 8. For FreeSurfer, the mapping IDs are corresponding to ‘aseg.mgz’, which does not contain cortical parcellations. For manual an-
notations, which has cortical parcellations, we first map all the parcels to a single cortex class. All the IDs greater than 100 with even values are mapped
to ID 210 (Right hemisphere cortex). Similarly, all the IDs greater than 100 with odd values are mapped to ID 211 (left hemisphere cortex). After this the
mapping to QuickNAT IDs are performed as per Tab. 8.
Table 8

Label Remapping Strategy

Structures QuickNAT FreeSurfer Manual
21
Left White Matter
 1
 2
 45

Left Cortex
 2
 3
 211

Left Lateral Ventricles
 3
 4
 52

Left Inf. Lat. Ventricles
 4
 5
 50

Left Cerebellum White Matter
 5
 7
 41

Left Cerebellum Cortex
 6
 8
 39

Left Thalamus
 7
 10
 60

Left Caudate
 8
 11
 37

Left Putamen
 9
 12
 58

Left Pallidum
 10
 13
 56

3rd ventricle
 11
 14
 4
4th ventricle
 12
 15
 11

Brainstem
 13
 16
 35

Left Hippocampus
 14
 17
 48

Left Amygdala
 15
 18
 32

CSF (Cranial)
 16
 24
 46

Left Accumbens
 17
 26
 30

Left Ventral DC
 18
 28
 62

Right White Matter
 19
 41
 44

Right Cortex
 20
 42
 210

Right Lateral Ventricles
 21
 43
 51

Right Inf. Lat. Ventricles
 22
 44
 49

Right Cerebellum White Matter
 23
 46
 40

Right Cerebellum Cortex
 24
 47
 38

Right Thalamus
 25
 49
 59

Right Caudate
 26
 50
 36

Right Putamen
 27
 51
 57

Right Pallidum
 28
 52
 55

Right Hippocampus
 29
 53
 47

Right Amygdala
 30
 54
 31

Right Accumbens
 31
 58
 23

Right Ventral DC
 32
 60
 61

Optic Chiasma
 33
 85
 69
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